One-dimensional Luttinger liquids in a two-dimensional moire lattice

  • Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, 2003).

  • Wen, XG Non-liquid metallic Fermi fixed point in two and more dimensions. Phys. Rev. B 426623–6630 (1990).

    Google Scholar CAS Announcements

  • Emery, VJ, Fradkin, E., Kivelson, SA, and Lubensky, TC Quantum theory of smectic metal state in band phases. Phys. Rev. Lett. 852160-2163 (2000).

    ADS CAS PubMed Google Scholar

  • Sondhi, SL & Yang, K. Slip phases via magnetic fields. Phys. Rev. B 63054430 (2001).

    Google Scholar announcements

  • Vishwanath, A. & Carpentier, D. Two-dimensional anisotropic Fermi nonliquid phase of coupled Luttinger liquids. Phys. Rev. Lett. 86676–679 (2001).

    ADS CAS PubMed Google Scholar

  • Mukhopadhyay, R., Kane, CL & Lubensky, TC Sliding Luttinger liquid phases. Phys. Rev. B 64045120 (2001).

    Google Scholar announcements

  • Kane, CL, Mukhopadhyay, R. & Lubensky, TC Fractional Quantum Hall Effect in a Quantum Wire Network. Phys. Rev. Lett. 88036401 (2002).

    ADS CAS PubMed Google Scholar

  • Teo, JCY & Kane, CL From Luttinger liquid to non-abelian quantum Hall states. Phys. Rev. B 89085101 (2014).

    Google Scholar announcements

  • Tam, PM & Kane, CL Off-diagonal anisotropic quantum Hall states. Phys. Rev. B 103035142 (2021).

    Google Scholar CAS Announcements

  • Neupert, T., Chamon, C., Mudry, C. & Thomale, R. Wireframe deconstructionism of two-dimensional topological phases. Phys. Rev. B 90205101 (2014).

    Google Scholar announcements

  • Iadecola, T., Neupert, T., Chamon, C. & Mudry, C. Wireframe constructions of abelian topological phases in three or more dimensions. Phys. Rev. B 93195136 (2016).

    Google Scholar announcements

  • Meng, T., Neupert, T., Greiter, M., and Thomale, R. Wire-coupled construction of chiral spin liquids. Phys. Rev. B 91241106 (2015).

    Google Scholar announcements

  • Patel, AA & Chowdhury, D. Two-dimensional spin liquids with Z2 topological order in a network of quantum wires. Phys. Rev. B 94195130 (2016).

    Google Scholar announcements

  • Kennes, DM, Xian, L., Claassen, M. & Rubio, A. One-dimensional flat bands in twisted bilayer germanium selenide. Nat. Commmon. 111124 (2020).

    ADS CAS PubMed PubMed Central Google Scholar

  • Ali, MN et al. Large non-saturating magnetoresistance in WTe2. Nature 514205-208 (2014).

    ADS CAS PubMed Google Scholar

  • Wang, P et al. Landau quantization and highly mobile fermions in an insulator. Nature 589225-229 (2021).

    ADS CAS PubMed Google Scholar

  • Jia, Y. et al. Evidence of a single-layer excitonic insulator. Nat. Phys. 1887–93 (2022).

    CAS Google Scholar

  • Bockrath, M. et al. Luttinger-liquid behavior in carbon nanotubes. Nature 397598–601 (1999).

    Google Scholar CAS Announcements

  • Yao, Z., Postma, HWC, Balents, L. & Dekker, C. Intramolecular junctions of carbon nanotubes. Nature 402273–276 (1999).

    Google Scholar CAS Announcements

  • Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 3461344-1347 (2014).

    ADS CAS PubMed Google Scholar

  • Fei, Z et al. Edge conduction in WTe monolayer2. Nat. Phys. 13677–682 (2017).

    CAS Google Scholar

  • Tang, S. et al. 1T′-WTe monolayer quantum spin Hall state2. Nat. Phys. 13683–687 (2017).

    CAS Google Scholar

  • Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 35976–79 (2018).

    ADS MathSciNet CAS PubMed MATH Google Scholar

  • Sajadi, E. et al. Gate-induced superconductivity in a single-layer topological insulator. Science 362922–925 (2018).

    ADS CAS PubMed Google Scholar

  • Fatemi, V. et al. Electrically tunable low-density superconductivity in a single-layer topological insulator. Science 362926–929 (2018).

    ADS MathSciNet CAS PubMed Google Scholar

  • Jung, J., Raoux, A., Qiao, Z. & MacDonald, AH Ab initio theory of moiré superlattice bands in two-dimensional layered materials. Phys. Rev. B 89205414 (2014).

    Google Scholar announcements

  • Levitov, S. & Shytov, AV Semi-classical theory of Coulomb’s anomaly. J. Exp. Theor. Phys. Lett. 66214-221 (1997).

    Google Scholar

  • Bartosch, L. & Kopietz, P. Zero-bias anomaly in the density of states of low-dimensional metals. EUR. Phys. J.B. 2829–36 (2002).

    Google Scholar CAS Announcements

  • Rodin, AS & Fogler, MM Apparent power-law behavior of conductance in disordered quasi-one-dimensional systems. Phys. Rev. Lett. 105106801 (2010).

    ADS CAS PubMed Google Scholar

  • Ishii, H. et al. Direct observation of the Tomonaga–Luttinger liquid state in carbon nanotubes at low temperature. Nature 426540-544 (2003).

    ADS CAS PubMed Google Scholar

  • Deshpande, VV, Bockrath, M., Glazman, LI & Yacoby, A. Electronic liquids and solids in one dimension. Nature 464209–216 (2010).

    ADS CAS PubMed Google Scholar

  • Auslaender, OM et al. Separation and localization of spin charge in one dimension. Science 30888–92 (2005).

    ADS CAS PubMed Google Scholar

  • Sato, Y. et al. Strong electron-electron interactions of a Tomonaga-Luttinger liquid observed in InAs quantum wires. Phys. Rev. B 99155304 (2019).

    Google Scholar CAS Announcements

  • Glattli, DC input The Quantum Hall Effect: Poincaré Seminar 2004 (eds. Douçot, B. et al.) 163–197 (Birkhäuser, 2005); https://doi.org/10.1007/3-7643-7393-8_5.

  • Li, T et al. Observation of a helical Luttinger liquid in the Hall edges of InAs/GaSb quantum spin. Phys. Rev. Lett. 115136804 (2015).

    ADS PubMedGoogle Scholar

  • Stühler, R. et al. Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat. Phys. 1647–51 (2020).

    Google Scholar

  • Biermann, S., Georges, A., Giamarchi, T. & Lichtenstein, A. In Strongly correlated fermions and bosons in low-dimensional disordered systems (eds. Lerner, I.V et al.) 81–102 (Springer, 2002); https://doi.org/10.1007/978-94-010-0530-2_5.

  • Dudy, L., Aulbach, J., Wagner, T., Schäfer, J. & Claessen, R. One-dimensional quantum matter: gold-induced nanowires on semiconductor surfaces. J.Phys. Condens. Question 29433001 (2017).

    ADS CAS PubMed Google Scholar

  • Clarke, DG, Strong, SP & Anderson, PW Single-particle jumping inconsistency between Luttinger liquids. Phys. Rev. Lett. 723218–3221 (1994).

    ADS CAS PubMed Google Scholar

  • Georges, A., Giamarchi, T. & Sandler, N. Interchain Conductivity of Coupled Luttinger Liquids and Organic Conductors. Phys. Rev. B 6116393–16396 (2000).

    Google Scholar CAS Announcements

  • Ali, MN et al. Correlation of crystal quality and extreme magnetoresistance of WTe2. Europhys. Lett. 11067002 (2015).

    Google Scholar announcements

  • Kim, K. et al. Tunable moiré bands and strong correlations in small twist angle bilayer graphene. proc. Natl Acad. Science. UNITED STATES 1143364–3369 (2017).

    ADS CAS PubMed PubMed Central Google Scholar

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 55643–50 (2018).

    ADS CAS PubMed Google Scholar

  • Ponomarenko, LA et al. Cloning of Dirac fermions in graphene superlattices. Nature four hundred ninety seven594-597 (2013).

    ADS CAS PubMed Google Scholar

  • Simon, S. H. Comment on “Proof of an anisotropic state of two-dimensional electrons at high Landau levels”. Phys. Rev. Lett. 834223–4223 (1999).

    Google Scholar CAS Announcements

  • Lopatin, A., Georges, A. & Giamarchi, T. Hall effect and interchain magneto-optical properties of coupled Luttinger liquids. Phys. Rev. B 63075109 (2001).

    Google Scholar announcements

  • Giannozzi, P. et al. Advanced features for material modeling with Quantum ESPRESSO. J.Phys. Condens. Question 29465901 (2017).

    CAS PubMed Google Scholar

  • van Setten, MJ et al. The PseudoDojo: training and classification of a table of pseudopotentials keeping the standards optimized to 85 elements. Calculation. Phys. Commmon. 22639–54 (2018).

    Google Scholar announcements

  • Perdew, JP, Burke, K. & Ernzerhof, M. The Generalized Gradient Approximation Simplified. Phys. Rev. Lett. 773865–3868 (1996).

    ADS CAS PubMed Google Scholar

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parameterization of density-functional dispersion correction (DFT-D) for the 94 H-Pu elements. J. Chem. Phys. 132154104 (2010).

    ADS PubMedGoogle Scholar

  • Naik, MH & Jain, M. Ultraflat Bands and Shear Solitons in Moiré Patterns of Twisted Bilayer Transition Metal Dichalcogenides. Phys. Rev. Lett. 121266401 (2018).

    ADS CAS PubMed Google Scholar

  • Nam, NNT & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96075311 (2017).

    Google Scholar announcements

  • Leave a Reply